4 research outputs found

    Simurgh: a fully decentralized and secure NVMM user space file system

    Get PDF
    The availability of non-volatile main memory (NVMM) has started a new era for storage systems and NVMM specific file systems can support extremely high data and metadata rates, which are required by many HPC and data-intensive applications. Scaling metadata performance within NVMM file systems is nevertheless often restricted by the Linux kernel storage stack, while simply moving metadata management to the user space can compromise security or flexibility. This paper introduces Simurgh, a hardware-assisted user space file system with decentralized metadata management that allows secure metadata updates from within user space. Simurgh guarantees consistency, durability, and ordering of updates without sacrificing scalability. Security is enforced by only allowing NVMM access from protected user space functions, which can be implemented through two proposed instructions. Comparisons with other NVMM file systems show that Simurgh improves metadata performance up to 18x and application performance up to 89% compared to the second-fastest file system.This work has been supported by the European Comission’s BigStorage project H2020-MSCA-ITN2014-642963. It is also supported by the Big Data in Atmospheric Physics (BINARY) project, funded by the Carl Zeiss Foundation under Grant No.: P2018-02-003.Peer ReviewedPostprint (author's final draft

    GekkoFS: A temporary distributed file system for HPC applications

    Get PDF
    We present GekkoFS, a temporary, highly-scalable burst buffer file system which has been specifically optimized for new access patterns of data-intensive High-Performance Computing (HPC) applications. The file system provides relaxed POSIX semantics, only offering features which are actually required by most (not all) applications. It is able to provide scalable I/O performance and reaches millions of metadata operations already for a small number of nodes, significantly outperforming the capabilities of general-purpose parallel file systems.The work has been funded by the German Research Foundation (DFG) through the ADA-FS project as part of the Priority Programme 1648. It is also supported by the Spanish Ministry of Science and Innovation (TIN2015–65316), the Generalitat de Catalunya (2014–SGR–1051), as well as the European Union’s Horizon 2020 Research and Innovation Programme (NEXTGenIO, 671951) and the European Comission’s BigStorage project (H2020-MSCA-ITN-2014-642963). This research was conducted using the supercomputer MOGON II and services offered by the Johannes Gutenberg University Mainz.Peer ReviewedPostprint (author's final draft

    GekkoFS: A temporary burst buffer file system for HPC applications

    Get PDF
    Many scientific fields increasingly use high-performance computing (HPC) to process and analyze massive amounts of experimental data while storage systems in today’s HPC environments have to cope with new access patterns. These patterns include many metadata operations, small I/O requests, or randomized file I/O, while general-purpose parallel file systems have been optimized for sequential shared access to large files. Burst buffer file systems create a separate file system that applications can use to store temporary data. They aggregate node-local storage available within the compute nodes or use dedicated SSD clusters and offer a peak bandwidth higher than that of the backend parallel file system without interfering with it. However, burst buffer file systems typically offer many features that a scientific application, running in isolation for a limited amount of time, does not require. We present GekkoFS, a temporary, highly-scalable file system which has been specifically optimized for the aforementioned use cases. GekkoFS provides relaxed POSIX semantics which only offers features which are actually required by most (not all) applications. GekkoFS is, therefore, able to provide scalable I/O performance and reaches millions of metadata operations already for a small number of nodes, significantly outperforming the capabilities of common parallel file systems.Peer ReviewedPostprint (author's final draft

    GekkoFS: A temporary distributed file system for HPC applications

    No full text
    We present GekkoFS, a temporary, highly-scalable burst buffer file system which has been specifically optimized for new access patterns of data-intensive High-Performance Computing (HPC) applications. The file system provides relaxed POSIX semantics, only offering features which are actually required by most (not all) applications. It is able to provide scalable I/O performance and reaches millions of metadata operations already for a small number of nodes, significantly outperforming the capabilities of general-purpose parallel file systems.The work has been funded by the German Research Foundation (DFG) through the ADA-FS project as part of the Priority Programme 1648. It is also supported by the Spanish Ministry of Science and Innovation (TIN2015–65316), the Generalitat de Catalunya (2014–SGR–1051), as well as the European Union’s Horizon 2020 Research and Innovation Programme (NEXTGenIO, 671951) and the European Comission’s BigStorage project (H2020-MSCA-ITN-2014-642963). This research was conducted using the supercomputer MOGON II and services offered by the Johannes Gutenberg University Mainz.Peer Reviewe
    corecore